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Abstract
Multiparameter spectral theory generalizes the classical spectral theory of
linear operators to n linear operators linked by n spectral parameters. The
spectral parameters arise as separation constants when, for example, separation
of variables techniques are used to solve boundary-value problems for partial
differential equations. In this paper, we discuss some of the fundamental aspects
of the theory such as solvability, commutativity and abstract representation
theory. Many of these concepts are of importance to modern developments in
separation of variables techniques. The ideas are illustrated in application to
differential equations and special functions of mathematical physics.

PACS numbers: 02.30.Gp, 02.30.Tb
Mathematics Subject Classification: 34L05, 33E10, 47A62, 47E05, 47F05

In memory of Vadim B Kuznetsov 1963–2005.

1. Introduction

Multiparameter spectral theory has its roots in the classic problem of solving boundary-value
problems for partial differential equations by classical methods of separation of variables. In
the standard case, the separation technique leads to the study of systems of ordinary differential
equations linked by spectral parameters (i.e. separation constants) in an elementary way. For
example, the problem of small oscillations of a rectangular membrane with fixed boundary
leads to a pair of Sturm–Liouville eigenvalue problems which are separated not only as regards
their independent variables but also in regards to the spectral parameters as well. The same
problem posed for the circular membrane leads to only mild parametric linking. This is a
kind of triangular situation. The parameter in the angular equation must be determined by
periodicity and the resulting values substituted into the radial equation leading to the study of
various Bessel functions. The full multiparameter situation arises in full if we pursue this class
of problems a little further. Consider for example the vibration problem of an elliptic membrane
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with clamped boundary. It is appropriate here to use elliptic coordinates. Application of the
separation of variables method leads to the study of eigenvalue problems for a pair of ordinary
differential equations both of which contain the same two spectral parameters. This is then a
genuine two-parameter problem. The ordinary differential equations which arise are Mathieu
equations with solutions expressible in terms of Mathieu functions. Other problems of this
type give rise to two- or three-parameter eigenvalue problems and their resolution lies to a large
extent in the properties of the ‘higher’ special functions of mathematical physics, e.g. Lamé
functions, spheroidal wavefunctions, paraboloidal wavefunctions, ellipsoidal wavefunctions,
etc. Many of these special functions have been vigorously studied over the past century. In
contrast, the general case of multiparameter spectral theory has been rather neglected over
the years despite the fact that it arose almost as long ago as the classic work of Sturm and
Liouville on one-parameter eigenvalue problems.

In its most general setting, the multiparameter eigenvalue problem for ordinary differential
equations may be formulated in the following manner.

Consider the system of n ordinary, second-order, linear, formally self-adjoint differential
equations in the n parameters, λ1, . . . , λn, n � 2,

d2yr

dx2
r

+

{
n∑

s=1

ars(xr)λs − qr(xr)

}
yr = 0, (1.1)

0 � xr � 1, r = 1, . . . , n with ars(xr), qr(xr) continuous and real-valued functions. By
writing λ for (λ1, . . . , λn) we may formulate an eigenvalue problem for (1.1) by demanding
that λ be chosen so that equations (1.1) have non-trivial solutions with each satisfying the
homogeneous boundary conditions:

cos αryr(0) − sin αr

dyr(0)

dxr

= 0, 0 � αr < π,

cos βryr(1) − sin βr

dyr(1)

dxr

= 0, 0 < βr � π,

r = 1, . . . , n.

(1.2)

If λ can be so chosen, it is called an eigenvalue and the corresponding product
∏n

r=1 yr(xr , λ)

is called the eigenfunction.
Much of the early work regarding the systems (1.1) and (1.2) was concerned with certain

extensions of the Sturmian oscillation theory. As regards spectral theory and in particular
questions related to the completeness of eigenfunctions and the like some further structure
must be imposed on the system. It is clear from the formulation that a tensor product space
setting is necessary. Furthermore, we need multiparameter analogues of the classical ‘right’
and ‘left’ definiteness positivity conditions essential to one-parameter spectral theory.

For the multiparameter eigenvalue problems (1.1) and (1.2), the appropriate positivity
conditions are

(A) �n ≡ det{ars}nr,s=1 > 0, (1.3)

for all x = (x1, . . . , xn) ∈ I n (the Cartesian product of the n intervals, 0 � xr � 1, r =
1, . . . , n) or

(B) �n �= 0,
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with

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n

...
...

ar−1,1 · · · ar−1,n

µ1 · · · µn

ar+1,1 · · · ar+1,n

...
...

an1 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0, (1.4)

for each r = 1, . . . , n and for some non-trivial real numbers µ1, . . . , µn.
The problem defined by (1.1), (1.2) and condition (A) is called a ‘right definite’

multiparameter eigenvalue problem, whereas the problem defined by (1.1), (1.2) and condition
(B) is called ‘left definite’.

The structural conditions (A) and (B) have an extension to analogous conditions for
abstract linear operators in Hilbert space and these extended conditions are crucial to the
development of abstract multiparameter spectral theory.

Since the 1930s, apart from the continued interest in special functions, multiparameter
spectral theory remained somewhat neglected until the 1960s when F V Atkinson gave
an address to the American Mathematical Society in Iowa City on 27th November 1965.
Atkinson’s lecture was monumental in that it sets out a wide ranging programme not
only including differential equations, but also matrices and matrix pencils, a functional
calculus, questions of duality and much more. The lecture was published in 1967 as an
expository article in the Bulletin of the American Mathematical Society [3]. Following
this, Atkinson brought together his ideas in the finite-dimensional case in the book [4]. A
subsequent book dealing with infinite-dimensional problems and applications to differential
equations was planned but unfortunately was never published. In 1978, the author published
the monograph [26] in which many aspects of the infinite-dimensional case in a Hilbert
space setting were discussed. Other works which give excellent and extensive coverage of
multiparameter spectral problems are those of Faierman [11], McGhee and Picard [23] and
Volkmer [29].

In this paper, we discuss those aspects of multiparameter spectral theory which have
important connections with the modern developments in separation of variables as considered
by Sklyanin [27] and Kuznetsov et al [20]. In section 2, we set down a formal definition of
the abstract multiparameter spectral problem and address certain fundamental notions such as
solvability of systems of linear operator equations and associated commutativity properties.
The expansion and the multiparameter spectral representation theorems are considered in
section 3. In section 4, we consider a novel and fundamental abstract relation which throws
new light on integral representation results for special functions and also appears to be related
in a fundamental way to the factorization techniques of Kuznetsov et al [20]. Section 5 outlines
a new approach to the factorization problem for Schur polynomials by exploiting the theory of
section 4. The paper concludes, in section 6, with a discussion of open problems and suggests
new research directions. Throughout we illustrate the ideas with examples and applications,
many of which are new to the literature. The time is opportune to concentrate new efforts to
understand and develop multiparameter theory in the light of new applications emerging in
mathematical analysis and theoretical physics.
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2. Commutativity and solvability

In this section, we set down certain fundamental notions regarding the abstract multiparameter
eigenvalue problem in Hilbert space.

Consider the abstract problem

Aiu
i =

n∑
j=1

λjSiju
i, i = 1, . . . , n, (2.1)

where the Sij are bounded symmetric operators in a Hilbert space Hi and the Ai are self-adjoint
operators in Hi . As in the case of ordinary differential equations, the n-tuple (λ1, . . . , λn) of
complex numbers is called an eigenvalue of (2.1) if each equation has a non-trivial solution
ui ∈ Hi for this n-tuple. The corresponding element u1 ⊗ · · · ⊗ un in the tensor product space
H = ⊗n

i=1Hi is called an eigenvector to this eigenvalue. In analogy with the right definiteness
condition (A) above, we suppose

det
1�i,j�n

{(Si,ju
i, ui)i} > 0 (2.2)

for all ui �= 0 in Hi (here (·, ·)i denotes the inner product in Hi). It is then standard to prove
that the eigenvalues of (2.1) are real. With the further assumption that each Ai has compact
resolvent and that zero is in the resolvent set, Browne [6] established the first completeness
theorem for (1.2) under the assumption that

A+
i f =

n∑
j=1

S+
ij gj , i = 1, . . . , n (2.3)

is uniquely solvable in g1, . . . , gn ∈ H for each f = f 1 ⊗ · · · ⊗ f n with f i ∈ D(Ai) ⊂ Hi .
The operators A+

i and S+
ij denote the operators induced in the tensor product space H by Ai

and Sij , respectively. The question of when (2.3) is solvable is fundamental to multiparameter
spectral theory and had already been raised by Atkinson [3]. The first result on solvability is
due to Källström and Sleeman [17]. To describe this result we begin with a few observations.

Every operator Sij in Hi has a corresponding induced operator S+
ij in H = ⊗n

i=1Hi defined
as follows:

S+
ij (u

1 ⊗ · · · ⊗ un) = u1 ⊗ · · · ⊗ ui−1 ⊗ Siju
i ⊗ ui+1 ⊗ · · · ⊗ un

on separable elements and then extended by linearity and continuity. It is easy to verify that
S+

ij is bounded and symmetric on H and∥∥S+
ij u

∥∥ � ‖Sij‖i‖u‖,
where ‖·‖ denotes the tensor product norm in H and ‖·‖i is the operator norm of Sij in Hi .
Since Sij and Skl operate in different spaces when i �= k, the corresponding operators S+

ij and
S+

kl in H will commute for all choices of j and l, 1 � j, l � n. It then follows that we can
define the determinantal operator

S = det
(
S+

ij

)
1�i,j�n

which is bounded and symmetric on H. We now strengthen condition (2.2) with the following
assumption.

Assumption. S is a positive definite operator in H, i.e. there is a constant C > 0 such that

(Su, u) � C‖u‖2, u ∈ H. (2.4)

This implies in particular that S has a bounded inverse defined on H.
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From now on, in this section, all operators will be considered as acting in H and the +
notion will be omitted.

By expanding det(Sij ) we see that

S =
n∑

i=1

SikŜik =
n∑

i=1

ŜikSik, k = 1, . . . , n,

where Ŝik is the cofactor of Sik in S. Similarly, we find
n∑

i=1

Sij Ŝik = Sδjk, j, k = 1, . . . , n, (2.5)

where δjk is the Kronecker delta. Note, however, that if i �= k then
n∑

j=1

Sij Ŝkj �= Sδik.

Consider the problem, find solutions u1, . . . , un in H of the linear operator system
n∑

j=1

Sijuj = fi, i = 1, . . . , n, (2.6)

for given f1, . . . , fn in H. Observe that if a solution exists then it is unique and can be
constructed by applying Ŝik to the ith equation in (2.6) and summing over i to get

n∑
i=1

n∑
j=1

ŜikSijuj =
n∑

i=1

Ŝikfi

which reduces to

uk = S−1
n∑

i=1

Ŝikfi (2.7)

for k = 1, . . . , n. This is the usual Cramer’s rule solution. However, in order to verify that
(2.7) solves (2.6), mere substitution leads to sums of the form

n∑
j=1

SijS
−1Ŝkj

which cannot be reduced to simpler terms. So to establish the existence an inductive argument
is used. This argument makes use of the following lemma.

Lemma 1. If S is positive definite on H, there exists a linear combination of cofactors
n∑

k=1

αkŜjk some j = 1, . . . , n,

which is positive definite on H. With this basic lemma and a variant of Gaussian elimination,
an induction argument proves that (2.6) has a unique solution. For details, see [17].

As an example, consider the case of n = 2 and seek the solution of

S11u1 + S12u2 = f1,

S21u1 + S22u2 = f2,

5
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where S = S11S22 − S12S21 is positive definite. Furthermore, an affine transformation and
lemma 1 allows us to assume that S11 ≡ ˆS22 is also positive definite.

From the first equation

u1 = S−1
11 (f1 − S12u2),

and this inserted in the second equation gives(
S22 − S21S

−1
11 S12

)
u2 = f2 − S21S

−1
11 f1,

and by commutativity this reduces to

S−1
11 Su2 = f2 − S−1

11 S21f1

and so

u2 = S−1(S11f2 − S21f1).

A by-product of the method of solution is that certain commutativity relations hold between
the elements of S. The construction above shows that a solution is

u1 = (
S−1

11 + S−1
11 S12S

−1S21
)
f1 − S−1

11 S12S
−1S11f2,

u2 = S−1(S11f2 − S21f1).

However, we know that the solution exists and is given by Cramer’s rule as

u1 = S−1(S22f1 − S12f2),

u2 = S−1(S11f2 − S21f1).

Finally, on comparing these forms of solutions gives the following identities:

S11S
−1S22 − S12S

−1S21 = I,
(2.8)

S12S
−1S11 = S11S

−1S12.

In addition, a careful study of the methods of proof used to establish (2.8) shows that it
holds without requiring S11 to be positive definite and in addition it follows that

S21S
−1S22 = S22S

−1S21. (2.9)

As a consequence, we see that the operators S−1/2S11S
−1/2 and S−1/2S12S

−1/2 commute
as well as the operators S−1/2S21S

−1/2 and S−1/2S22S
−1/2. Similar but more complicated

identities hold in the general n × n case.
The fundamental problem of the solvability of systems of operator equations generalizes

in a number of directions which allows one to develop multiparameter spectral theory under
more general structural conditions than condition (A) above. To illustrate this, suppose we
have operators Ai, Sij , i, j = 1, . . . , n with the property

(B) Ai, Sij : Hi → Hi, i, j = 1, . . . , n are Hermitian and continuous.
In addition, we shall impose a general definiteness condition which is introduced as

follows: let f = f 1 ⊗ · · · ⊗ f n be an element of H with fi ∈ Hi, i = 1, . . . , n

and let α0, α1, . . . , αn be a given set of real numbers not all zero. Then the operators
�i : H → H, i = 1, . . . , n can be defined by the equation

Af =
n∑

i=0

αi�if = det

∣∣∣∣∣∣∣∣∣

α0 α1 · · · αn

−A1f1 S11f1 · · · S1,nf1

...
...

...

−Anfn Sn1fn · · · Sn,nfn

∣∣∣∣∣∣∣∣∣
, (2.10)

6
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where the determinant is to be expanded formally using the tensor product. This defines �if

for decomposable f ∈ H and we extend the definition to arbitrary f ∈ H by linearity and
continuity. We can now introduce the definiteness condition

(C) (Af, f ) � C‖f ‖2. (2.11)

We now pose the problem, given f ∈ H find elements fi ∈ H, i = 1, . . . , n, satisfying the
system of equations

n∑
i=0

αifi = f,

(2.12)

−A+
i f0 +

n∑
j=1

S+
ij fj = 0, i = 1, . . . , n.

The arguments developed in [17] show that (2.12) subject to condition (C) has a unique
solution for any f ∈ H given by Cramer’s rule:

fi = (A+)−1�+
i f, i = 0, . . . , n, (2.13)

where the operators A+,�+
i : H → H are those induced by A,�i defined in (2.10). This

time we deduce the following commutativity relations.

Lemma 2. The operators appearing in the system (2.12) enjoy the following commutativity
properties:

n∑
j=0

αj (A
+)−1α̂j = I,

n∑
j=0

S+
ij (A

+)−1Ŝij = I, i = 1, . . . , n,

n∑
j=0

αj (A
+)−1Ŝkj = 0, k = 1, . . . , n,

n∑
j=0

S+
ij (A

+)−1α̂j = 0, i = 1, . . . , n,

n∑
j=0

S+
ij (A

+)−1Ŝkj = 0, k �= i, i, k = 1, . . . , n.

For proofs of the above results and further extensions, we refer to Browne and Sleeman [7],
Källström and Sleeman [18] and Binding and Košir [5]. Before moving onto the importance
of these results to multiparameter spectral theory, we mention that the commutativity relations
above have been recently re-discovered independently by Enriquez and Rubtsov [9] in their
work on commuting families in skew algebraic fields.

3. Completeness and expansion theory

In this section, we outline the main ideas leading to results which are fundamental to
establishing the completeness of eigenfunctions of the multiparameter eigenvalue problem
via the Parseval equality and the associated eigenvector expansion. Indeed we present an

7



J. Phys. A: Math. Theor. 41 (2008) 015209 B D Sleeman

essentially unified multiparameter spectral theory. For the purposes of presentation, we
continue to assume that the operators Ai, Sij , i, j = 1, . . . , n and A defined by (2.10) satisfy
conditions (B) and (C) above. Rather than use the inner product (·, ·) in the tensor product
space H generated by the inner products (·, ·)i in Hi , we use the inner product given by (A+·, ·)
which will be denoted by [·, ·]. The norms induced by these inner products are equivalent and
so topological concepts such as continuity of operators and convergence of sequences may be
discussed unambiguously without reference to a particular inner product. Algebraic concepts
however may depend on the inner product. For an operator L : H → H we denote by L∗ the
adjoint of L with respect to [·, ·], i.e. for all f, g ∈ H we have

[Lf, g] = [f,L∗g]. (3.1)

For the operators �i : H → H, i = 0, 1, . . . , n defined by

�i ≡ (A+)−1�i, (3.2)

we have the following theorem.

Theorem 3.1. �i = �i
∗.

The proof of this is an immediate consequence of the definition of adjoint. Working with the
inner product [·, ·] in H, the operators �i, i = 0, 1, . . . , n form a family of (n + 1) commuting
Hermitian operators. Let σ(�i) denote the spectrum of �i and σ0 = ×0�i�nσ (�i), the
Cartesian product of the σ(�i), i = 0, 1, . . . , n. Then since σ(�i) is a non-empty compact
subset of R, it follows that σ0 is a non-empty compact subset of R

n+1.
Let Ei(·) denote the resolution of the identity for the operator �i and let Mi ⊂ R be a

Borel set, i = 0, 1, . . . , n. We then define E(M0 ×M1 ×· · ·×Mn) = ∏n
i=0 Ei(Mi). Note the

projections Ei(·) will commute since the operators �i commute. Thus in this way we obtain
a spectral measure E(·) on the Borel subsets of R

n+1 which vanishes outside σ0. Measures of
the form [E(·)f, f ] will be non-negative finite Borel measures vanishing outside σ0.

The spectrum σ of the system {Ai, Sij } may be defined as the support of the operator-
valued measure E(·), i.e. σ is the smallest closed set outside of which E(·) vanishes or
alternatively σ is the smallest closed set with the property E(M) = E(M ∩ σ) for all Borel
sets M ⊂ R

n+1. Thus, σ is a compact subset of R
n+1 and if λ ∈ σ then for all non-degenerate

closed rectangles M with λ ∈ M,E(M) �= 0. Thus the measures [E(M)f, g], f, g ∈ H

actually vanish outside σ .
We are now in a position to state our main result, namely, the Parseval equality and

eigenvector expansion theorem.

Theorem 3.2. Let f ∈ H . Then

(i) (A+f, f ) =
∫

σ

[E(dλ)f, f ] =
∫

σ

(E(dλ)f,A+f ). (3.3)

(ii) f =
∫

σ

E(dλ)f, (3.4)

where this integral converges in the norm of H.

This theorem is an easy consequence of the theory of functions of several commuting
Hermitian operators.

8
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4. Abstract relations

In one-parameter spectral theory of ordinary differential operators, certain insights are to be
gained by reformulating differential equations as equivalent integral equations. The extension
of this idea to the multiparameter case has been considered by Arscott [1]. In the case of the
abstract problem (2.1), the analogue of such integral equations is a relation defined on H, the
tensor product of the spaces Hi, i = 1, . . . , n.

We begin with some basic notations and concepts.
Let w = w1 ⊗· · ·⊗wn ∈ H,wi ∈ Hi be a decomposed element, and for a fixed un ∈ Hn

consider the mapping

w → w1 ⊗ · · · ⊗ wn−1(wn, un)Hn
∈ ⊗n−1

i=1 Hi,

where (·, ·)Hn
denotes the inner product in Hn. This mapping can conveniently be written

as 〈w, un〉Hn
and may be extended from decomposable w to the whole of H by linearity and

continuity. In a similar way, we may construct the mapping

w → 〈〈w, ui〉Hi
, uk〉Hk

∈ ⊗n
r=1,r �=i,kHr,

for i �= k and where ui, uk are fixed elements in Hi,Hk , respectively.
The analogue of Fubini’s theorem holds, namely,

〈〈w, ui〉Hi
, uk〉Hk

= 〈〈w, uk〉Hk
, ui〉Hi

.

In addition to the abstract problem (2.1), we introduce the operator equation

Bv =
n∑

j=1

λ̄j Tj v, (4.1)

where B is a densely defined and closed linear operator in a separable Hilbert space h and the
Tj , 1 � j � n, are bounded symmetric operators in h. The n-tuple (λ1, . . . , λn) is taken to be
an eigenvalue of the problem (2.1).

The fundamental question now arises.
Does there exist a relationship between the solution v of (4.1) and the corresponding

eigenvector u1 ⊗ · · · ⊗ un of (2.1)?
To investigate this, we introduce the further tensor product space

H = H ⊗ h = (⊗n
i=1Hi

) ⊗ h

and define in H the determinantal operator

A = det

∣∣∣∣∣∣∣∣∣∣

−A++
1 S++

11 · · · S++
1n

...
...

...

−A++
n S++

n1 · · · S++
n,n

−B++ T ++
1 · · · T ++

n

∣∣∣∣∣∣∣∣∣∣
, (4.2)

where, for example, S++
ij is the operator in H induced by Sij . The domain D(A) of A is taken

to be the algebraic tensor product(⊗a
n
i=1D(Ai)

)⊗aD(B) ⊆ H. (4.3)

With these constructions, the main result of this section is the abstract relation embodied in
the following theorem.

9
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Theorem 4.1. Let K ∈ H be an element in the null space of Ā (the closure of A) and let
u = u1 ⊗ · · · ⊗ un be an eigenvector of (2.1) corresponding to the eigenvalue (λ1, . . . , λn).
Then

v = 〈S++K, u〉H ∈ D(B)

is a solution of (4.1), possibly trivial, with the same eigenvalue (λ1, . . . , λn). Here
S++;H → H is the operator in H induced by S.

For the proof of this result, see Källström and Sleeman [17] and Sleeman [26].
We now illustrate the application of theorem (4.1) with a number of examples.

Example 1 (n = 1). The classical Sturm–Liouville eigenvalue problem.
Let H1 = L2(0, 1) and A1 : D(A1) ⊂ H1 → H1 be the Sturm–Liouville operator

A1 = − d2

dx2
+ q(x),

where

D(A1) = {u, u′ absolutely continuous locally on [0, 1] , u(0) = u(1) = 0}.
For the operator S11 : H1 → H1 we take

S11 = r(x)u.

In other words we are considering the eigenvalue problem

d2u

dx2
+ (λr(x) − q(x))u = 0, 0 < x < 1,

(4.4)
u(0) = u(1) = 0.

Now choose the space h = H1 = L2(0, 1) and identify B with A1 and T1 with S11. Then on
H = H1 ⊗ H2 = L2(0, 1) ⊗ L2(0, 1), we define the determinantal operator

A =
∣∣∣∣∣

∂2

∂x2 − q(x) r(x)

∂2

∂y2 − q(y) r(y)

∣∣∣∣∣ ,
which is none other than the partial differential operator

r(y)

(
∂2

∂x2
− q(x)

)
− r(x)

(
∂2

∂y2
− q(y)

)
(4.5)

which is self-adjoint and defined on D(A1) ⊗a D(A1) ⊆ H.

Let K(x, y) be an element in the null space of (4.5), then theorem 4.1 shows that v must
be a multiple of the eigenfunction u and that u satisfies the integral equation

u(y) = µ

∫ 1

0
K(x, y)r(x)u(x) dx. (4.6)

This is a classic result in the theory of the Sturm–Liouville problem in which the kernel
K(x, y) turns out to be the Green function associated with (4.4). See, for example, Ince [13]
or Hellwig [12].

Example 2a (n = 2). Arscott’s [1] two-parameter problem.

Here we investigate the two-parameter case of problem (1.1) under the positivity
condition (A) in (1.3). Throughout we assume the Sturm–Liouville structure as in example 1.

10
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Let

A1 = − d2

dx2
+ q1(x), A2 = − d2

dy2
+ q2(y),

S1j represent multiplication by the continuous function r1j (x), j = 1, 2, 0 � x � 1 and
S2j represent multiplication by the continuous function r2j (y), j = 1, 2, 0 � y � 1. Here,
Hi = L2(0, 1), i = 1, 2, and we assume the boundary conditions (1.2) are given.

Now choose h = L2(0, 1) and identify the operator B with A1 and the operators
Ti, i = 1, 2, with S1i , j = 1, 2. That is,

B = − d2

dz2
+ q1(z), T1 = r11(z), T2 = r12(z), 0 � z � 1.

The next step is to construct the determinantal operator

A = det

∣∣∣∣∣∣∣∣
d2

dx2 − q1(x) r11(x) r12(x)

d2

dy2 − q2(y) r21(y) r22(y)

d2

dz2 − q1(z) r11(z) r12(z)

∣∣∣∣∣∣∣∣
.

When suitably interpreted, this is the partial differential operator

(r11(x)r22(y) − r12(x)r21(y))

(
∂2

∂z2
− q1(z)

)

+ (r11(z)r12(x) − r11(x)r12(z))

(
∂2

∂y2
− q2(y)

)

+ (r12(z)r21(y) − r11(z)r22(y))

(
∂2

∂x2
− q1(x)

)
. (4.7)

Now let K(x, y, z) be a suitably chosen element in the null space of (4.7), then from
theorem (4.1) we can represent the eigenfunction u1(z) in terms of the eigenvector u1(x)u2(y)

via the integral relation

u1(z) = µ

∫ 1

0

∫ 1

0
K(x, y, z, )u1(x)u2(y)(r11(x)r22(y) − r12(x)r21(y) dx dy. (4.8)

Realization of this result in application to Lamé functions and ellipsoidal wavefunctions and
other special functions are well known in the literature. See, for example, Arscott [2] and
Browne and Sleeman [8] and the references cited therein.

Example 2b (n = 2).

To introduce this example we recall the operator �i : H → H, i = 1, 2 defined by the
determinantal operator (2.10) and note that under condition (A), �0 is strictly positive. In
addition, we make use of the operators �i = �−1

0 �i, i = 1, 2 defined in section 3. These
operators are pairwise commutative and fundamental to the completeness and expansion
theory. For our purposes, it is enough to observe that if u = u1 ⊗ u2 is an eigenvector of (2.1)
with corresponding eigenvalue (λ1, λ2) then u is simultaneously an eigenvector of the set of
problems

�1u = λ1�0u, �2u = λ2�0u. (4.9)

Now, as in example 2a, we take

A1 = − d2

dx2
+ q1(x), A2 = − d2

dy2
+ q2(y),

S1j = r1j (x), j = 1, 2, 0 � x � 1,

S2j = r2j (y), j = 1, 2, 0 � y � 1.

11
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Again Hi = L2(0, 1), i = 1, 2 and the boundary conditions (1.2) are given. Now choose
h = H = L2(0, 1) ⊗ L2(0, 1) and take the operator B = �̄1, T1 = �0, T2 = φ.

Note that the realization of B is the partial differential operator

B = A1 ⊗ S22 − S12 ⊗ A2

= r22(w)

(
− ∂2

∂z2
+ q1(z)

)
− r12(z)

(
− ∂2

∂w2
+ q2(w)

)
. (4.10)

The realization of the operator T1 is the multiplication by the continuous function

T1 = r11(z)r22(w) − r12(z)r21(w). (4.11)

We now construct the determinantal operator

A = det

∣∣∣∣∣∣∣
∂2

∂x2 − q1(x) r11(x) r12(x)
∂2

∂y2 − q2(y) r21(y) r2,2(y)

r22(w)
(

∂2

∂z2 − q1(z)
) − r12(z)

(
∂2

∂w2 − q2(w)
)

r11(z)r22(w) − r12(z)r21(w) 0

∣∣∣∣∣∣∣ ,
which when written in full is the partial differential operator

A = (r11(x)r22(y) − r12(x)r21(y))

{
r22(w)

(
∂2

∂z2
− q1(z)

)
− r12(z)

(
∂2

∂w2
− q2(w)

)}

− (r11(z)r22(w) − r12(z)r21(w)

{
r22(y)

(
∂2

∂x2
− q1(x)

)
− r12(x)

(
∂2

∂y2
− q2(y)

)}
.

(4.12)

If K(x, y; z,w) is a suitably chosen element in the null space of (4.12), then from
theorem (4.1) the eigenfunction u1(x)u2(y) satisfies the integral equation

u1(x)u2(y) = µ

∫ 1

0

∫ 1

0
K(x, y; z,w)u1(z)u2(w)�0(z, w) dz dw. (4.13)

This integral equation, like the integral representation (4.8), has been realized for a number
of the higher special functions such as Lamé functions and ellipsoidal wavefunctions. See
Arscott [2], Browne and Sleeman [8] and Sleeman [24].

Example 2c (n = 2).

This example, we believe, is new to the literature and views the two-parameter problem (1.1)
as essentially a one-parameter problem with one spectral parameter held fixed. Let

A1 = − d2

dx2
+ q1(x) − λ1r11(x), S11 = r12.

Now choose B : H → H to be the partial differential operator (see (2.10))

�2 = r21(z)

(
∂2

∂y2
− q1(y)

)
− r11(y)

(
∂2

∂z2
− q2(z)

)
(4.14)

and let the operator T1 be the operation of multiplication by the continuous function

T1 = r11(y)r22(z) − r12(y)r21(z) ≡ �0(y, z).

This time we construct the determinantal operator

A = det

∣∣∣∣∣
∂2

∂x2 − q1(x) + λ1r11(x) r12(x)

r21(z)
(

∂2

∂y2 − q1(y)
) − r11(y)

(
∂2

∂z2 − q2(z)
)

r11(y)r22(z) − r12(y)r21(z)

∣∣∣∣∣ ,
12
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which can be written as the partial differential operator

A = �0(y, z)

(
d2

dx2
− q1(x) + λ1r11(x)

)

− r12(x)r21(z)

(
d2

dy2
− q1(y) + λ1r11(y)

)

+ r12(x)r11(y)

(
∂2

∂z2
− q2(z) + λ1r21(z)

)
. (4.15)

Now if K(x, y, z) is a suitably chosen element in the null space of (4.15) then from
theorem (4.1)

u1(y)u2(z) = µ

∫ 1

0
K(x, y, z)u1(x)r12(x) dx. (4.16)

This integral relation appears to be new. However, a special form in application to ellipsoidal
harmonics appears in Whittaker and Watson [30].

Before leaving this topic, it is appropriate to point out that the power of the abstract relation
in theorem (4.1) depends in a crucial way on finding kernels K in the null space of the operator
A in (4.2). That is, in application to Sturm–Liouville multiparameter problems, one needs
to be able to solve in a non-trivial manner any one of the partial differential operators (4.7),
(4.11) and (4.14). This is not a straightforward task but fortunately for many special functions
posed as the solution to multiparameter problems a wide variety of kernels are known.

The result of example 2c is related to the work of Kuznetsov and Sklyanin [21].

5. Reduction and factorization of Schur polynomials

The subject of this section is motivated by the so-called Q-operator method used to solve a
class of quantum integrable systems, see Kuznetsov et al [20] and the references cited therein.

Consider a quantum integrable system defined by n commuting linear partial differential
operators Li in n variables whose common eigenfunctions �λ(x) ≡ �λ(x1, . . . , xn), i.e.

Li�λ(x) = hi(λ)�λ(x)

form a basis in a Hilbert space H. The multi-index λ = (λ1, . . . , λn) is a set of quantum
numbers labelling the spectrum hi(λ) and the eigenfunctions �λ(x).

By definition, a Q-operator Qz depends on a parameter z ∈ C and satisfies the
commutativity properties

[Qz1 ,Qz2 ] = 0 ∀z1, z2 ∈ C, (5.1)

[Qz,Li] = 0 ∀z ∈ C and each i = 1, . . . , n, (5.2)

which imply that Qz can be diagonalized by the basis functions �λ(x), i.e.

[Qz�λ](y) = qλ(z)�λ(y). (5.3)

A fundamental property of the Q-operator is that its eigenvalues qλ(z) satisfy a linear ordinary
differential equation with respect to z, namely,

W

(
z,

d

dz
; {hi(λ)}

)
qλ(z) = 0, (5.4)

whose coefficients depend on the eigenvalues hi(λ) of the commuting operators Li .
Equation (5.4) is called Baxter’s equation or the separation equation. This equation will
appear in a somewhat different guise in the discussion to follow.

13
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A separating operator Sn factorizes the basis functions �λ(x) into functions of one
variable:

Sn : �λ(x1, . . . , xn) → cλ

n∏
i=1

φ
(i)
λ (zi), (5.5)

where cλ is a normalization constant. The functions φ
(i)
λ (zi) are called separated functions.

In [21], Kuznetsov and Sklyanin observed that any Q-operator gives rise to a family of
separating operators for an integrable system. That is, given a Q-operator Qz and a linear
functional ρ on H one can construct a product of n such operators

Qz = Qz1 · · ·Qzn
(5.6)

and an integral operator S(ρ)
n = ρQz. It then follows that S(ρ)

n is a family of separating
operators parameterized by the functional ρ. By a suitable choice of the functional ρ one
can simplify the structure of the integral operator S(ρ)

n . The principle goal of [20] is to
study classes of Q-operators and the functional ρ for a variety of quantum integrable systems
in order to construct the simplest separating operators Sn which factorize special functions
�λ(x1, . . . , xn). In particular, Kuznetsov et al [20] make an in-depth study of the case when the
special functions �λ(x1, . . . , xn) are Jack’s [14] symmetric polynomials and λ = (λ1, . . . , λn)

is a partition.
In this section, we outline a new approach to the factorization problem and, for simplicity,

illustrate the ideas in relation to the Schur polynomials [10]. In particular, we construct
differential equations satisfied by Schur polynomials and then invoke various forms of the
abstract relations discussed in section 4 to develop integral relations which lead to the desired
factorization.

Schur polynomials are defined as

Sλ(x1, . . . , xn) =

det

∣∣∣∣∣∣∣∣∣∣

x
λ1+n−1
1 · · · xλ1+n−1

n

...
...

x
λn−1+1
1 · · · x

λn−1+1
n

x
λn

1 · · · xλn
n

∣∣∣∣∣∣∣∣∣∣

det

∣∣∣∣∣∣∣∣∣

xn−1
1 · · · xn−1

n

...
...

x1 · · · xn

1 · · · 1

∣∣∣∣∣∣∣∣∣
≡ gλ(x1, . . . , xn)

g0(x1, . . . , xn)
, (5.7)

where λ = (λ1, . . . , λn) ∈ N
n, λ1 � λ2 � · · · � λn � 0, is a partition of arbitrary weight |λ|,

|λ| =
n∑

i=1

λi.

The first step is to determine the partial differential equation satisfied by
Sλ(x1, . . . , xk, 1 . . . , 1), 1 � k � n. Observe that gλ(x1, . . . , xn), considered as a function

of the single variable xi , satisfies the homogeneous ordinary differential equation

L(xi)y ≡
n∏

j=1

(
xi

d

dxi

− (λj + n − j)

)
y = 0. (5.8)

14
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Consequently, it follows that Sλ(x1, . . . , xn) satisfies the partial differential equation
n∑

i=1

L(xi)g0(x1, . . . , xn)Sλ(x1, . . . , xn) = 0 (5.9)

and Sλ(x1, . . . , xn−1, 1) satisfies the partial differential equation
n−1∑
i=1

L(xi)g0(x1, . . . , xn−1, 1)Sλ(x1, . . . , xn−1, 1) = 0. (5.10)

By introducing the notation

∂r
xk

f ≡ ∂rf

∂xr
k

(x1, . . . , xk−1, xk, xk+1, . . . , xn), xk = 1

and successive use of L’Hospital’s rule shows that Sλ(x1, . . . , xk, 1, . . . , 1) satisfies the partial
differential equation

k∑
i=1

L(xi)
(
∂n−k−1
xk+1

∂n−k−2
xk+2

· · · ∂xn−1g0(x1, . . . , xk, 1, . . . , 1)
)
Sλ(x1, . . . , xk, 1, . . . , 1) = 0.

(5.11)

We now describe a suitable Hilbert space setting for the above partial differential expressions.
Let C(a, b, c, . . .) be the field of rational functions in indeterminants a, b, c, . . . over

the field C of complex numbers, C(a, b, c, . . .)[x, y, z, . . .], the ring of polynomials in the
variables x, y, z, . . . with coefficients from C(a, b, c, . . .) and C[x, y, z, . . .]Sn be the subring
of symmetric polynomials. The Schur polynomials form a basis in C[x]Sn . In the usual way,
C[x]Sn can be completed to a Hilbert space when endowed with a suitable inner product. To
begin with, we introduce the scalar product

〈u, v〉 =
∫
Sx

u(x)v(x)
(g0(x))2( ∏n
i=1 xi

)n−1 dx (5.12)

where the domain of integration, by symmetry,

Sx = {xi = exp 2iqi, i = 1, . . . , n, q ∈ R
n/πZ

n}. (5.13)

The Schur polynomials are orthogonal with respect to the inner product (5.12). By completing
C[x]Sn with respect to the inner product (5.12), we obtain a Hilbert space Hn. It is then a
straightforward matter to show that the partial differential operator defined in (5.9) is symmetric
on the space spanned by the Schur polynomials.

Following a similar line of reasoning, we can construct a suitable Hilbert space setting for
the partial differential operator (5.10) defined on the space of polynomials Sλ(x1, . . . , xn−1, 1).
These polynomials are orthogonal with respect to the inner product

〈u, v〉 =
∫
Sx,xn=1

u(x)v(x)

(
g0(x, xn = 1)

)2(∏n−1
i=1 xi

)n−1 dx. (5.14)

We denote the resulting Hilbert space by Hn−1. The appropriate Hilbert space setting for
the partial differential operator (5.11) is the inner product space spanned by the polynomials
Sλ(x1, . . . , xk, 1, . . . , 1) in which the following inner product is defined:

〈u, v〉 =
∫
S(x1 ,...,xk ,1,...,1)

u(x)v(x)

(
∂n−k−1
xk+1

∂n−k−2
xk+2

· · · ∂xn−1g0(x1, . . . , xk, 1, . . . , 1)
)2

(∏k
i=1 xi

)n−1 dx. (5.15)

The Hilbert space so constructed is denoted by Hk .

15
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With these constructions, we are in a position to sketch our factorization programme. To
begin with, we modify the notation defining the operators Li and define

L(xi) ≡ M(xi) − n, (5.16)

where

n ≡
n∏

j=1

(λj + n − j). (5.17)

We now wish to construct a map A1 : Hn → Hn−1 such that

A1g0(x1, . . . , xn)Sλ(x1, . . . , xn) = g0(x1, . . . , xn−1, 1)Sλ(x1, . . . , xn−1, 1). (5.18)

To do this, we appeal to the abstract theory developed in section 4 and construct the tensor
product space

H1 = Hn ⊗ Hn−1. (5.19)

Now let K(x, y; yn = 1) be an appropriate element in the null space of the partial differential
operator defined by the determinant

det

∣∣∣∣∣
∑n

i=1 M(xi) −nIn∑n−1
i=1 M(yi) −(n − 1)In−1

∣∣∣∣∣ (5.20)

then from theorem 4.1 we have the integral relation

g0(x1, . . . , xn−1, 1)Sλ(x1, . . . , xn−1, 1) = µ

∫
St

K(t, x; xn = 1)g0(t)Sλ(t) dt. (5.21)

In general, we wish to construct a sequence of maps An−k+1 : Hk → Hk−1, k = 1, . . . , n,

such that

An−k+1
(
∂n−k−1
xk+1

∂n−k−2
xk+2

· · · ∂xn−1g0(x1, . . . , xk, 1, . . . , 1)
)
Sλ(x1, . . . , xk, 1, . . . , 1)

= ∂n−k−2
xk

∂n−k−3
xk+1

· · · ∂xn−1g0(x1, . . . , xk−1, 1, . . . , 1)Sλ(x1, . . . , xk−1, 1, . . . , 1).

(5.22)

Now let K(x1, . . . , xk, y1, . . . , yk−1) be an appropriate element in the null space of the partial
differential operator defined by the determinant

det

∣∣∣∣∣
∑k

i=1 M(xi, ) −kIk∑k−1
i=1 M(yi, ) −(k − 1)Ik−1

∣∣∣∣∣ . (5.23)

Then again from theorem 4.1, we have

∂n−k−2
xk

∂n−k−3
xk+1

· · · ∂xn−1g0(x1, . . . , xk−1, 1, . . . , 1)Sλ(x1, . . . , xk−1, 1, . . . , 1)

= µ

∫
St

K(t1, . . . , tk, y1, . . . , yk−1)
(
∂n−k−1
tk+1

∂n−k−2
tk+2

· · · ∂tn−1g0(t1, . . . , xk, 1, . . . , 1)
)

× Sλ(t1, . . . , tk, 1, . . . , 1) dt,

k = 1, . . . , n. (5.24)

The next task is to address the problem of finding a sequence of maps Bn−k+1 : Hk → Hk,

k = 1, . . . , n, such that

Bn−k+1
(
∂n−k−1
xk+1

∂n−k−2
xk+2

· · · ∂xn−1g0(x1, . . . , xk, 1, . . . , 1)
)
Sλ(x1, . . . , xk, 1, . . . , 1)

= ∂n−k−2
xk

∂n−k−3
xk+1

· · · ∂xn−1g0(x1, . . . , xk−1, 1, . . . , 1)

× Sλ(x1, . . . , xk−1, 1, . . . , 1)qλ(z), (5.25)
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where qλ(z) is an eigenfunction of a certain ordinary differential operator. Our abstract theory
allows one to employ almost any such differential operator. However, a study of the work of
Kuznetsov et al [20] suggests qλ(z) be proportional to Fox’s hypergeometric function [10] and
satisfies

L(z)qλ(z) ≡ M(z)qλ(z) − nqλ(z). (5.26)

With this choice of eigenfunction we now carry a programme similar to the above. That let
K(x, y; yn = 1, z) be an appropriate element in the null space of

det

∣∣∣∣∣
∑n

i=1 M(xi) −nIn∑n−1
i=1 M(yi) + M(z) −nIn

∣∣∣∣∣ . (5.27)

Then theorem 4.1 shows that the following integral relation holds:

g0(x1, . . . , xn−1, 1)Sλ(x1, . . . , xn−1, 1)qλ(z) = µ

∫
St

K(t, x; xn = 1, z)g0(t)Sλ(t) dt. (5.28)

In a similar fashion, we may also construct the integral relation

∂n−k−2
xk

∂n−k−3
xk+1

· · · ∂xn−1g0(x1, . . . , xk−1, 1, . . . , 1)Sλ(x1, . . . , xk−1, 1, . . . , 1)qλ(z)

= µ

∫
St

K(t1, . . . , tk, y1, . . . , yk−1, z)∂
n−k−1
tk+1

∂n−k−2
tk+2

· · · ∂tn−1g0

× (t1, . . . , xk, 1, . . . , 1)Sλ(t1, . . . , tk, 1, . . . , 1) dt, (5.29)

where this time we seek a kernel K satisfying the partial differential equation realization of

det

∣∣∣∣∣
∑k

i=1 M(xi, ) −kIk∑k−1
i=1 M(yi, ) + M(z) −kIk

∣∣∣∣∣ . (5.30)

These integral relations define the desired maps Bn−k+1 : Hk → Hk, k = 1, . . . , n. It is
instructive to briefly construct some solutions of the partial differential equation (5.30) which
when written in full is[

k∑
i=1

M(xi) −
k−1∑
i=1

M(yi) − M(z)

]
K = 0, (5.31)

that is
k∑

i=1

n∏
j=1

(
xi

∂

∂xi

− (λj + n − j)

)
K −

k−1∑
i=1

n∏
j=1

(
yi

∂

∂yi

− (λj + n − j)

)
K

=
n∏

j=1

(
z

∂

∂z
− (λj + n − j)

)
K. (5.32)

One wide class of solutions can be obtained in the following manner. First, it is not difficult
to show, see [10, 20], that (5.8) has the polynomial solution

Gλ(x) = xλn(1 − x)1−n
nFn−1

⎛
⎝a1, a2, . . . , an

; x

b1, b2, . . . , bn−1

⎞
⎠ ,

where

ai = (λn − n) − (λi − i), i = 1, . . . , n and bj = aj + 1, j = 1, . . . , n − 1.

We now introduce the notation

xk ≡
k∏

i=1

xi, k = 1, . . . , n. (5.33)

17



J. Phys. A: Math. Theor. 41 (2008) 015209 B D Sleeman

An appropriate kernel K satisfying (5.32) is

K(x1, . . . , xk, y1, . . . , yk−1, z)

= (xkyk−1z)λn(1 − xkyk−1z)1−n
nFn−1

⎛
⎝a1, a2, . . . , an

; xkyk−1z

b1, b2, . . . , bn−1

⎞
⎠ .

(5.34)

In order to see how (5.34) is derived and at the same time to see how a wide class of kernel
solutions to (5.32) can be obtained, we make use of the transformation implied in the definition
(5.13). That is, we set

xj = exp 2iqj , yj = exp 2irj , z = exp 2it

and then (5.32) takes the form
k∑

i=1

n∏
j=1

(
∂

∂qi

− 2i(λj + n − j)

)
K −

k−1∑
i=1

n∏
j=1

(
∂

∂ri

− 2i(λj + n − j)

)
K

=
n∏

j=1

(
∂

∂t
− 2i(λj + n − j)

)
K. (5.35)

This is a partial differential equation with constant coefficients and furthermore due to its
symmetric form is formally satisfied by any function of the form

K(q1, . . . , qk; r1, . . . , rk−1; t) = F

(
k∑

i=1

qi +
k−1∑
i=1

ri + t

)
. (5.36)

Indeed, F could be chosen to be a polynomial of its argument. In particular, if we transform
back to the original variables one such polynomial is precisely (5.34).

A particularly important observation is that F need not depend on the parameters λi and
this opens the possibility of generating an elementary kernel which is essentially independent
of the factorization (5.29). That is, it should be possible to find a fixed kernel appropriate for
each step of the factorization. This is a key point in the work of Kuznetsov et al [20].

6. Open problems and new directions

Historically, multiparameter problems arose out of applying the method of separation of
variables to partial differential equations of physics and engineering. It has therefore
concentrated on applications to boundary-value or eigenvalue problems for ordinary
differential equations, namely, the multiparameter Sturm–Liouville problem. However, there
is still much to learn. In particular, it is of considerable importance to study the spectral
properties of a multiparameter system when some or all of the linked differential equations
are defined on unbounded intervals. In other words, what is the multiparameter analogue of
the Weyl limit point, limit circle theory as discussed for example in [12]? A first attempt at
such a theory is contained in [25]. As far as an abstract theory is concerned, Atkinson [4]
has pioneered the finite-dimensional case of matrices. However, it would be of considerable
interest to consider multiparameter problems for difference operators. This has important
applications in mathematical physics. In another direction, it is important to note that the
abstract formulation discussed in section 2 deals entirely with a Hilbert space setting. It is
therefore natural to seek a development of the theory in a Banach Space. Furthermore, our
formulation has consistently assumed that the operators Sij are bounded symmetric operators
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in a Hilbert space Hi and that the Ai are self-adjoint operators in Hi . It would be of interest
to develop the theory when the Sij are not necessarily bounded. If the Sij are unbounded but
compact relative to Ai , and Ai is positive, we can reformulate the problem in terms of the
identity operators Ii and the operators A−1

i Sij and the theory applies.
The topic of section 2, namely solvability, is fundamental to the development of

multiparameter spectral theory. It is intriguing that a number of commutativity identities
involving the operators emerge. Although we have not exploited these properties they do
suggest new ways of formulating multiparameter operator problems. In particular, the above
commutativity results are intimately connected with the general abstract problem of the study
of the joint spectra for several commuting operators as discussed by Taylor [28] and Källström
and Sleeman [19]. Again there is a need to extend the solvability results to the situation when
some or all of the Sij are unbounded.

The abstract relations discussed in section 4 open up a new and novel way of studying
multiparameter spectral theory. This has yet to be done in general. It is however clear that
the ideas developed in section 4 provide a unified way of obtaining many integral equations
and relations for special functions arising in physics and engineering. Furthermore, it also
indicates a framework in which to study special functions which do not necessarily arise from
the classical ideas of separation of variables. The subject of Schur polynomials considered
in section 5 is an interesting example of the possible way in which to address the important
factorization problems of interest to mathematical physics. It would be very interesting to
explore these ideas in application to Jack polynomials [14–16] and possibly the Macdonald
polynomials [22].
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